Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathrm{kx}$

Ex)

Pieces of Chicken (x)	7	6	10	4	8
Price in dollars (y)	7	6	10	4	8

For each piece of chicken it costs _1_ dollars.
1)

Pounds of Beef Jerky (x)	10	2	6	8	4
Price in dollars (y)	100	20	60	80	40

For every pound of beef jerky it cost \qquad dollars.
2)

Glasses of Lemonade (x)	3	10	7	9	5
Lemons Used (y)	12	40	28	36	20

For every glass of lemonade there were \qquad lemons used.
3)

Boxes of Candy (x)	8	7	10	6	4
Pieces of Candy (y)	160	140	200	120	80

For every box of candy you get \qquad pieces.
4)

Time in minute (x)	6	2	5	7	4
Distance traveled in meters (y)	126	42	105	147	84

Every minute \qquad meters are travelled.
5)

Concrete Blocks (x)	7	9	5	10	4
weight in kilograms (y)	70	90	50	100	40

Every concrete block weighs \qquad kilograms.
6)

Time in minute (x)	4	7	6	2	9
Gallons of Water Used (y)	168	294	252	84	378

Every minute \qquad gallons of water are used.
7)

Tickets Sold (x)	4	3	5	8	9
Money Earned (y)	40	30	50	80	90

Every ticket sold \qquad dollars are earned.
8)

Enemies Destroyed (x)	10	6	9	2	5
Points Earned (y)	200	120	180	40	100

Pvery enemy destroyed earns \qquad points.
8)

Answers

Ex. \qquad $y=1 x$

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Ex)

Pieces of Chicken (x)	7	6	10	4	8
Price in dollars (y)	7	6	10	4	8

For each piece of chicken it costs $\quad 1 \quad$ dollars.
1)

Pounds of Beef Jerky (x)	10	2	6	8	4
Price in dollars (y)	100	20	60	80	40

For every pound of beef jerky it cost $\quad 10$ dollars.
2)

Glasses of Lemonade (x)	3	10	7	9	5
Lemons Used (y)	12	40	28	36	20

For every glass of lemonade there were $\quad 4 \quad$ lemons used.
3)

Boxes of Candy (x)	8	7	10	6	4
Pieces of Candy (y)	160	140	200	120	80

For every box of candy you get _20_ pieces.
4)

Time in minute (x)	6	2	5	7	4
Distance traveled in meters (y)	126	42	105	147	84

Every minute $\quad 21$ meters are travelled.
5)

Concrete Blocks (x)	7	9	5	10	4
weight in kilograms (y)	70	90	50	100	40

Every concrete block weighs \qquad kilograms.
6)

Time in minute (x)	4	7	6	2	9
Gallons of Water Used (y)	168	294	252	84	378

Every minute _ 42 gallons of water are used.
7)

Tickets Sold (x)	4	3	5	8	9
Money Earned (y)	40	30	50	80	90

Every ticket sold _10_ dollars are earned.
8)

Enemies Destroyed (x)	10	6	9	2	5
Points Earned (y)	200	120	180	40	100

Every enemy destroyed earns \qquad 20 points.

Answers

Ex. \qquad $y=1 x$

1. $\mathbf{y}=10 \mathrm{x}$
2.

$$
\mathbf{y}=4 \mathrm{x}
$$

3. $y=20 x$
4.

$$
y=21 x
$$

5. $\mathbf{y}=10 \mathrm{x}$
6. $\quad \mathbf{y}=42 \mathrm{x}$
7. $\mathbf{y}=10 \mathrm{x}$
8. $\mathbf{y}=\mathbf{2 0 x}$
